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Abstract 

The purpose of research work is to calculate the Form factors of 116Sn and 118Sn nuclei by using 

three-parameter Gaussian model density distribution. The structural parameters, namely radius 

parameter (a), skin thickness parameter (z), charge density distribution parameter of 116Sn and 
118Sn  nuclei, taken from the experimental data are used to get the charge density distribution.  

After getting the charge density distribution, root mean square radius and the form factor are 

calculated. At the inner region (<4fm), the density distributions of 116Sn and 118Sn nuclei are 

slightly different. In the tail part, they are nearly the same for these nuclei. The calculated results 

of charge density distributions and root mean square radii are in good agreement with the 

experimental results. Moreover, the form factors of them also agree with the experimental values 

except 0.5fm-1 region. 
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Introduction 

There are two types of nuclear distributions which are nuclear charge distribution and 

nuclear matter distribution. The charge distribution is mainly determined by the arrangement of 

the protons and the matter distribution by those of protons and neutrons combined. Our 

calculation is associated with charge density distribution. In theory, charge density distribution 

for various form factors depend on nuclear model. At the present work, the charge density 

distribution will be calculated with three-parameter Gaussian model charge density 

distribution. A compilation of nuclear charge density distribution parameters is obtained from 

elastic electron scattering experiment. The electrons give us information on charge distribution 

and neutrons give us information on matter distribution. In the nucleus, there are two main 

forces that we have to consider: the electromagnetic force and nuclear force. The former 

interests particles with an electric charge (protons, electrons), the latter holds protons and 

neutrons together. The nuclear force is not a fundamental force but a remnant of the strong 

interaction (which binds quarks to form neutrons and protons) like the Vander Waals forces 

that allow chemical bonds between molecules and remnants of the electromagnetic force 

within each atom and molecule. 

If we also want to know how neutrons are distributed then we should bombard the nucleus with 

particles that respond to nuclear force only and the nuclear choice is other neutrons. As far as 

we know, electron scattering has a higher resolution and therefore provides more detailed 

information than neutron scattering. The fact is that the neutrons are actually composed of 

quarks and each of them might be interacting with the quarks of protons and neutrons in the 

nucleus.  

The neutron scattering yields worse results than electron scattering but according to the 

description, they are compatible with one another. So, we get the distribution of protons 

(assuming charge distribution) from electron scattering and assume that the distribution of 

neutrons (assuming is matter distribution) is the same [1]. 

 

 

 

                                                            
1 Lecturer, Dr., Department of Physics, University of Mandalay 
2 Emeritus Professor, Dr, Department of Physics, Mandalay University 



112                                                                                    University of Mandalay, Research Journal, Vol.11, 2020   

 

Nuclear Charge Distribution 

The early theorists, without access to computers, had strong reasons to use analytical 

descriptions of charge density distributions and potentials, that enabled series expansions of 

analytical solutions of the wave functions within and close to the nucleus. A common choice 

was the homogenous charge distribution inside a radius 3
1

0ARR  , where A is the mass 

number of nucleus. The most important parameter for many properties is the expectation value 

<𝑟2 > which has the value 3R
2
/5for the homogenous nucleus. Already this simple distribution 

gives the correct analytical behavior. These expansions are also useful for general 

understanding of the effects involved [2]. 

Nuclear Electric Form Factor 

In an electron elastic scattering process with a target nucleus, we have non relativistic 

differential cross section (Rutherford) and relativistic differential cross section (Mott). The 

differential cross section of Rutherford scattering does not include the spins while Mott 

scattering takes into account the spin of the colliding particles. In both cases, it is assumed that 

the target nucleus is a point charge. For a target having an extended finite size, the differential 

cross section differs from that of the Rutherford or Mott by a factor called form 

factor F (q) such as  
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Thus, the form factor indicates the effect of the nuclear size upon the differential cross section, 

where q is the momentum transfer of the scattering process. The form is known as the Fourier 

transform of the charge density distribution, 
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and the verification of the above relation will be given later. The form factor plays an 

important role because it is the most important link between experimental observation and 

theoretical analysis. The form factor is the direct result of a cross section measurement. From 

the theoretical side, charge density distribution )r(ch is a solution of Schrodinger equation. 

Experiment Comparison Theory 
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Derivation of The Relation between Form Factor and Density Distribution 

Let us compute the scattering an electron by a spherically symmetric nucleus having a 

finite size of Figure. 
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The screened Coulomb potential between an electron and a point charge 

nucleus  

                                             V (𝑥) = −(Ze
2
/x)e

x/a
     (1) 

An infinitesimal volume element contains a charge which 

gives a contribution 
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The first Born approximation for a scattering amplitude f (q) is, 
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where  is the momentum transfer of the elastic scattering process 

with scattering angle θ.  

By substituting the V(x) in equation (4), we obtain 
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After solving the equation (5), scattering amplitude f (q) can be written as            

             
2ch

r.qi

2

2

q

4
)r(edr

2

mZe
)q(f










.   (6) 

Since, 
2

)q(f
d

d





 by squaring both sides of equation (6) 
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However, the differential scattering cross section for electron scattering by a 

point charge nucleus (Rutherford scattering) is known to be 
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By comparing equation (7) and (8),  
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where, the form factor is                 .    
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After solving the equation (9), the relation between Form Factor and Charge 

Density Distribution [3] is as follows:                        
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Three-Parameter Gaussian Model 

In our calculation, three-parameter Gaussian model is used to calculate the root mean square 

radius, charge density distribution and form factor. 

Using a Gaussian charge distribution then has the advantages of making it possible to evaluate 

electron-nucleus interactions using the same integral routines as the electron-electron 

interaction. An advantage of the use of Gaussian is that values of  at different values of  

are decoupled to a large extent because of the rapid decrease of the Gaussian tail.  The results 

of the analysis are independent of the number of Gaussians, provided this number is 

sufficiently large to allow a good fit to data [2]. 

For three-parameter Gaussian model, charge density distribution is 
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where, c= radius parameter (or) diffuseness parameter 

            z= the skin thickness parameter 

           w= the charge density distribution parameter 

The parameters of three - parameter Gaussian model are expressed in Table (1). 
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Table (1) Charge density distribution parameters for three-parameter    

                 Gaussian model [4] 

 

No. Nucleus c (or) a (fm) z (or) α (fm) w 

1. 
116

Sn 5.062 2.625 0.272 

2. 
118

Sn 5.058 2.625 0.295 

 

 

Calculation of RMS and Charge Density Distribution for Three Parameter 

Gaussian Model 

Density distribution for three-parameter Gaussian model is 
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The normalization condition for the density distribution is 
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Root mean square radius is calculated as follows: 
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Results and Discussion 

Root mean square radius and charge density distribution of 
116

Sn and 
118

Sn nuclei are 

determined to obtain the Form Factors. Three parameter Gaussian model charge density 

distributions are used for these nuclei. Three-parameters are that c or a is radius parameter, z or 

α is skin thickens parameter and w is charge density distribution parameter for these nuclei. 

The tail regions of charge density distribution for these nuclei are nearly the same, the top 

regions are not. It may be due to the effect of the number of neutrons. These results are 

expressed in Figure (2).  

The calculated and experimental values of the root mean square radius are expressed in Table 

(2). It can be seen that the calculated values are in good agreement with the experimental 

values. The charge density distributions of them are in good agreement between experimental 

and calculated results which are expressed in Figure (2) to Figure (4). Then, the form factors of 

these nuclei agree with the experimental values except 0.5fm
-1

 region. They are shown in 

Figure (5) and Figure (6). 

 

   

Figure (2) Charge Density Distribution of 
116 

Sn and 
118 

Sn nuclei in 3PG models 

116 
Sn 

118 
Sn 
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    Figure (3) Calculated and experimental results [5]of charge density distribution for 

116
 Sn 

 

Figure (4) Calculated and Experimental results [5] of charge density distribution for                                   

                 
118

Sn 



118                                                                                    University of Mandalay, Research Journal, Vol.11, 2020   

 

 

    

 

 

 

 

 

 

 

 

 

Figure (5) Calculated and Experimental results [6] of form factor for 
116

Sn 

 

Figure (6) Calculated and Experimental results [6] of form factor for 
118

Sn 

 

___ Calculated result 

---- Experimental result 

 

 ---------  Experimental result 

                                Calculated result 
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Table (2) Comparison between our calculated results and experimental   

                 results for RMS values of 
116

Sn and 
118

Sn  in 3PG model 

No. Nucleus Our calculated 

results (fm) 

Experimental 

results (fm) 

1. 
116

Sn 4.618 4.619 

2. 
118

Sn 4.634 4.634 
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